پایان نامه بررسی شاخص های پیری و ردیابی ژن آلفامانوزیداز مرتبط با پیری

پایان نامه بررسی شاخص های پیری و ردیابی ژن آلفامانوزیداز مرتبط با پیری

پایان‌نامه جهت اخذ درجه کارشناسی‌ارشد
 رشته مهندسی کشاورزی
 عنوان:
بررسی شاخص­های پیری و ردیابی ژن آلفامانوزیداز مرتبط با پیری در چند رقم گیلاس

با فرمت قابل ویرایش word

تعداد صفحات: 90  صفحه

تکه های از متن به عنوان نمونه :


فهرست مطالب:

1- مقدمه و کلیات…………………………………………………………………………………………………………………. 2

1-1- مقدمه……………………………………………………………………………………………………………………. 2

1-2- اهداف…………………………………………………………………………………………………………………… 3

1-3- فرضیه­ ها………………………………………………………………………………………………………………… 4

2- سابقه تحقیق…………………………………………………………………………………………………………………….. 6

2-1- خاستگاه و گیاهشناسی گیلاس………………………………………………………………………………… 6

2-2- طبقه­بندی ارقام گیلاس……………………………………………………………………………………………. 7

2-3- کیفیت میوه……………………………………………………………………………………………………………. 7

2-3-1- آنتوسیانین……………………………………………………………………………………………………. 7

2-3-2- اسیدیته………………………………………………………………………………………………………… 8

2-3-3- مواد جامد محلول…………………………………………………………………………………………. 8

2-3-4- سفتی بافت…………………………………………………………………………………………………… 9

2-3-5- کلروفیل و کاروتنوئید…………………………………………………………………………………….. 9

2-3-6- کربوهیدرات­ها……………………………………………………………………………………………. 10

2-4- بلوغ و رسیدگی در گیلاس……………………………………………………………………………………. 10

2-5- انبارمانی گیلاس…………………………………………………………………………………………………… 11

2-6- فیزیولوژی تنفس…………………………………………………………………………………………………… 12

2-7- اسید آبسیزیک……………………………………………………………………………………………………… 13

2-8- پیری……………………………………………………………………………………………………………………. 14

2-9- کنترل ژنتیکی متابولیسم گیاه…………………………………………………………………………………. 14

2-10- آنزیم آلفامانوزیداز و نقش آن در رسیدگی……………………………………………………………. 15

3- مواد و روش کار……………………………………………………………………………………………………….. 18

3-1- زمان و مکان آزمایش……………………………………………………………………………………………. 18

3-2- بخش بیوشیمیایی…………………………………………………………………………………………………. 18

3-2-1- مواد گیاهی………………………………………………………………………………………………… 18

3-2-2- طرح آماری آزمایش……………………………………………………………………………………. 18

3-2-3- اندازه­گیری سفتی……………………………………………………………………………………….. 19

3-2-5- اندازه­گیری آنتوسیانین………………………………………………………………………………… 19

3-2-6- اندازه­گیری کلروفیل دم میوه……………………………………………………………………….. 19

3-2-7- اندازه­گیری مواد جامد محلول میوه……………………………………………………………… 21

3-2-8- اندازه­گیری اسیدیته قابل تیتراسیون میوه………………………………………………………. 21

3-2-9- اندازه­گیری قند…………………………………………………………………………………………… 21

3-2-9-1- مواد مورد نیاز………………………………………………………………………………….. 21

3-2-9-2- استخراج قند…………………………………………………………………………………….. 22

3-2-9-3- اندازه­گیری قند کل……………………………………………………………………………. 22

3-2-9-4- منحنی استاندارد قند کل……………………………………………………………………. 23

3-2-9-5- اندازه­گیری فروکتوز………………………………………………………………………….. 23

3-2-9-6- تهیه نمودار استاندارد فروکتوز……………………………………………………………. 24

3-3- بخش بیوتکنولوژی……………………………………………………………………………………………….. 25

3-3-1- مواد گیاهی………………………………………………………………………………………………… 25

3-3-2- استخراج DNA…………………………………………………………………………………………. 25

3-3-3- طراحی آغازگرها………………………………………………………………………………………… 26

3-3-4- تکثیر قطعات انتخابی………………………………………………………………………………….. 27

3-3-5- ارزیابی محصول PCR به وسیله تکنیک الکتروفورز ژل آگارز………………………… 28

3-3-6- توالی­یابی محصول PCR…………………………………………………………………………….. 28

3-4- تجزیه و تحلیل آماری……………………………………………………………………………………………. 28

4- نتایج و بحث………………………………………………………………………………………………………… 30

4-1- تاثیر کاربرد پس از برداشت اسید آبسیزیک بر سفتی میوه گیلاس…………………………….. 30

4-2- تاثیر کاربرد پس از برداشت اسید آبسیزیک بر تغییرات آنتوسیانین میوه گیلاس………… 33

4-3- تاثیر کاربرد پس از برداشت اسید آبسیزیک بر کلروفیل کل و کاروتنوئید دم میوه گیلاس 36

4-4- تاثیر کاربرد پس از برداشت اسید آبسیزیک بر میزان مواد جامد محلول میوه گیلاس…. 42

4-5- تاثیر کاربرد پس از برداشت اسید آبسیزیک بر میزان اسیدیته قابل تیتراسیون میوه گیلاس 45

4-6- تاثیر کاربرد پس از برداشت اسید آبسیزیک بر میزان قند کل و فروکتوز میوه گیلاس…. 48

4-7- استخراج DNA…………………………………………………………………………………………………… 53

4-8- نتایج حاصل از طراحی آغازگر………………………………………………………………………………. 54

4-9- تکثیر ژن آلفامانوزیداز در پنج رقم گیلاس……………………………………………………………… 54

4-10- بررسی نتایج حاصل از توالی­یابی و همردیف­سازی توالی­های بدست آمده……………….. 56

4-11- روابط فیلوژنی توالی­های مورد بررسی…………………………………………………………………. 60

4-12- نتیجه­گیری کلی………………………………………………………………………………………………….. 61

4-13- پیشنهادات…………………………………………………………………………………………………………. 62

فهرست منابع……………………………………………………………………………………………………………….. 64


چکیده:
 این کار تحقیقی در دو بخش بیوشیمیایی و بیوتکنولوژی در محل آزمایشگاه علوم باغبانی دانشگاه علوم کشاورزی و منابع طبیعی گرگان انجام شد. در بخش بیوشیمیایی، جهت بررسی تاثیر کاربرد پس از برداشت اسید آبسیزیک بر شاخص­های کیفی و روند پیری دو رقم زودرس و دیررس گیلاس، آزمایشی فاکتوریل در قالب طرح بلوک­های کامل تصادفی و در چهار تکرار صورت گرفت. تیمار اول، رقم (کرج و تکدانه) و تیمار دوم، اسید آبسیزیک (در دو غلظت صفر و ppm200) مورد بررسی قرار گرفتند. میوه­ها در فواصل زمانی پنج روز و طی مدت 20 روز از زمان برداشت، از لحاظ تغییرات صفات کیفی ارزیابی شدند. طبق نتایج بدست آمده، با گذشت زمان، سفتی در هر دو رقم کاهش یافته، و در نمونه­های تیمار شده با اسید آبسیزیک کاهش بیشتری نشان داد. میزان آنتوسیانین روند افزایشی داشت. میزان کلروفیل کل و کاروتنوئید دم میوه­ها با گذشت زمان به طور معنی­داری کاهش یافت. مواد جامد محلول میوه­ها تا روز دهم کاهش و در روز پانزدهم افزایش پیدا کرد. اسیدیته میوه­ها روند نزولی داشت و در روز بیستم اختلاف معنی­داری بین نمونه­های تیمار شده و تیمار نشده مشاهده شد. با گذشت زمان در میزان قند کل میوه­ها تغییر معنی­داری مشاهده نشد اما به طور کلی تغییرات قند کل دارای روند افزایشی بود. روند تغییرات فروکتوز برای نمونه­های تیمار شده و تیمار نشده با اسید آبسیزیک، در رقم کرج معنی­دار نبود اما بین رقم تکدانه تیمار شده و تیمار نشده با اسید آبسیزیک اختلاف معنی­داری در روز 15 و 20 مشاهده گردید. با توجه به این نتایج، می­توان نقش اسید آبسیزیک را در ایجاد تغییرات کیفی و همچنین تاثیر بر روند پیری میوه­ها، مورد توجه قرار داد. در بخش بیوتکنولوژی، ژن آلفامانوزیداز (یک ژن مرتبط با پیری) برای اولین بار، در پنج رقم مختلف گیلاس شناسایی و تعیین توالی شد. به این منظور، آغازگرهای رفت و برگشت ژن مورد نظر از طریق مراجعه به پایگاه داده NCBI و استفاده از توالی­های مربوط به ژن آلفامانوزیداز برای هلو و فلفل، با استفاده از کپی کامل cDNA هلو و فلفل طراحی شد. به علت زیاد بودن طول ژن سه جفت آغازگر طراحی شد گه این آغازگرها قادرند طول 3100 جفت­باز را پوشش دهند. همچنین دمای اتصال آغازگرها با استفاده از برنامه گرادیانت PCR بدست آمد. بعد از استخراج DNA ارقام گیلاس، یک قسمت از ژن مذکور تکثیر، توالی­یابی (با استفاده از نرم­افزار سنگر) و همردیف­سازی توالی­ها انجام شد و نمودار دندروگرام مربوط به آن با استفاده از نرم‌افزار 3 View رسم گردید. بررسی و مقایسه توالی­های معکوس، شباهت و تفاوت­هایی را در ارقام مختلف نشان داد که بر طبق آن ارقام پیش­رس (ER)، پیش­رس خارجی (FE) و دیررس (LR) دارای شباهت بیشتر بوده و در یک گروه قرار گرفتند. ارقام پیش­رس قزوین (GH) و دوم­رس (MR) دارای تفاوت بیشتری نسبت به سه رقم اول بوده و با یکدیگر نیز تفاوت نشان داده و هرکدام به طور جداگانه یک گروه مجزا را تشکیل دادند.این تفاوت­ها می­توانند در عملکرد ژن و در نتیجه رفتار گیاه تاثیرگذار باشند. به عنوان مثال، با مطالعات بیشتر و استفاده از تکنیک­های مهندسی ژنتیک، می­توان علت زمان­های متفاوت رسیدگی و تفاوت در طول عمر انبارمانی موجود در ارقام مختلف گیلاس را در این اختلاف توالی‌ها جستجو نمود. فصل اول: مقدمه و کلیات 1- مقدمه و کلیات 1-1- مقدمه از دیرباز پدیده­ی عمر یکی از مسائل مهم حیات بوده است. از این­رو افزایش عمر برای موجودات گیاهی، جانوری و یا انسان می­تواند حائز اهمیت باشد. پیری در گیاهان به عنوان مرحله­ی نهایی نمو تعریف شده است. از مشخصه­های بارز پیری کنترل روند تغییرات بسیار منظم و کنترل شده فعل و انفعالات فیزیولوژیکی است. از جمله مهمترین این رخدادها توقف فتوسنتز، تجزیه کلروپلاست، کاهش چشمگیر کلروفیل و شکستن پروتئین­ها و لیپید­ها و سایر مولکول­های بزرگ می­باشد (نواب پور و همکاران، 2003). در میوه­های فرازگرا اتیلن عامل اصلی پیر شدن میوه می­باشد و کنترل اتیلن از مکانیسم­های اصلی جلوگیری از پیری در این میوه­ها است. اما گیلاس یک میوه­ی نافراز­گرا است. این میوه دارای ارقام متفاوتی از نظر طول عمر می­باشد که شناسایی عوامل دخیل در تعیین طول عمر در ارقام زودرس و دیررس می­تواند منجر به افزایش طول عمر گیلاس گردد. طی رسیدن میوه، دسته­ای از فرآیندهای بیوشیمیایی که از لحاظ ژنتیکی در گیاه برنامه­ریزی شده­اند رخ می­دهد که باعث تغییر ویژگی­های میوه‌ی نارس و تبدیل آن به میوه‌ی رسیده می‌شود (برامل، 2006). همچنین بعد از برداشت محصولات، تغییرات مختلف ساختاری ادامه می­یابند که در جهت تخریب بافت میوه عمل می­کنند (یو و همکاران، 2003). نرم شدن بیش از حد میوه­ها مساله­ای است که عمر پس از برداشت آنها را کاهش می­دهد. در محصولات تراریخته با تغییر در بیان ژن پروتئین­ها و آنزیم­هایی که بر ویژگی­های دیواره­ی سلولی تاثیرگذار هستند، می­توان میزان فعالیت و تاثیر آنزیم­هایی مثل پلی گالاکتوروناز را در روند رسیدگی و نرم شدن محصول بررسی کرد (برامل و هارپستر، 2001 و واکابایاشی، 2000). نرم شدن و تغییرات بافتی طی رسیدن میوه­ها در هر گونه­ی خاص، ویژگی­های مخصوص به خود را داراست (برامل و همکاران، 2004). علاوه بر این، تحقیقات نشان داده است که آنزیم­های آلفامانوزیداز (α-Man) و بتادی ان استیل هگزوسامینیداز (ß -Hex) در رسیدگی و نرم شدن میوه­های نافراز­گرا نقش دارند (قوش و همکاران، 2010). با توجه به نافراز­گرا بودن میوه­ی گیلاس، مشخص نیست که بین ارقام زود­رس و دیر­رس این میوه چه بخشی از ژن­های α-Man و ß-Hex و ژن توسعه­ی سلولی (EXP) باعث تفاوت در طول عمر انباری گیلاس­های زود­رس و دیر­رس می­گردد. همچنین مشخص نمی­باشد که شاخص­های پیری بین دو رقم زود­رس و دیر­رس چه تفاوتی از نظر فعالیت­های آنزیمی α-Man و ß -Hex، لیپاز، پروتئاز و همچنین مقادیر قند، مواد جامد محلول، نشاسته، ساکارز سینتئاز و اینورتاز در طی دوران رسیدگی و پیری دارند. تفاوت الگوی ژنی این آنزیم­ها در سطح ژنومیک نیز مشخص نیست. در این پژوهش، توالی­ یک ژن­ نامزد عامل پیر شدن به نام آلفامانوزیداز از پایگاه اطلاعاتی ژنوم هلو و فلفل استخراج گشت. بر اساس توالی به دست آمده و کاربرد نرم افزار پرایمر3، توالی پرایمرهای اختصاصی مناسب برای تکثیر این ژن نامزد، طراحی و سپس ساخته شد و ژن­ مربوطه از DNA ژنومیک گیلاس استخراج و به کمک دستگاه ترموسایکلر و روش زنجیره­ای پلیمراز تکثیر و سپس به کمک دستگاه توالی­یاب تعیین توالی شد. در مرحله­ی بعد با کاربرد نرم­افزار پاپ ژن، توالی به­دست آمده برای ژن­ استخراج شده و ارقام زود­رس و دیر­رس مورد مقایسه قرار گرفت و اختلافات موجود از نظر حذف تک نقطه­ای و یا قطعه­ای و یا اضافه شدن ارزیابی شد. در این تحقیق اثر اسید آبسیزیک نیز بر شاخص­های پیری مورد بررسی قرار گرفت. 2-1- اهداف 1- تشخیص تفاوت­های توالی ژن­ مذکور (α-Man) بین دو رقم زود­رس و دیررس و تشخیص هرگونه تفاوت در توالی هر تک نوکلئوتید یا موتاسیون تک نقطه­ای و مقایسه­ی این ژن­ها بین ارقام گیلاس زود­رس با انبارداری پایین و دیر­رس با انبارداری بالا 2- مقایسه­ شاخص­های پیری بین این دو رقم گیلاس زود­رس و دیر­رس 3- تعیین تغییرات گلوکز، فروکتوز در زمان رسیدگی و پیری و طیف تغییرات آنها در میوه گیلاس 3-1- فرضیه ها 1- ارقام گیلاسی که دیر­رس و دارای طول عمر انبار­داری زیادتر هستند، دارای تفاوت در توالی ژن­ مربوطه می­باشند که این احتمالا مربوط به منطقه دومین آنزیم می­باشد. 2- کاربرد هورمون اسید آبسیزیک در ارقام دیر­رس باعث بروز پیری با تاخیر بیشتری نسبت به ارقام زود­رس می­گردد.
دانلود فایل

پایان نامه بررسی کارایی روش تجزیه و تحلیل عملکرد چشم انداز LFA در مراتع ییلاقی خشک


پایان نامه  کارشناسی ارشد


عنوان :
بررسی کارایی روش تجزیه و تحلیل عملکرد چشم انداز (
LFA) در مراتع ییلاقی خشک ندوشن

 (مطالعه موردی: مرتع مزرعه امین استان یزد)


با فرمت قابل ویرایش word

تعداد صفحات: 95  صفحه

تکه های از متن به عنوان نمونه :

چکیده

 یکی از روش های نوین پایش اکوسیستم مرتعی، روش تجزیه و تحلیل عملکرد چشم انداز (LFA) می باشد. هدف از این مطالعه بررسی توانایی این روش در بیان تفاوت های موجود در مناطق مرجع و بحرانی،  بررسی صحت شاخص های سطح خاک LFA  و نیز ارائه LFA تطبیق داده شده (CLFA) درمراتع ییلاقی خشک مرکزی ایران می باشد. روش LFA با 10 تکرار در مناطق مرجع و بحرانی بکار گرفته شد سپس صحت شاخص های ارائه شده، از طریق میزان تبعیت آنها از اندازه گیری های صحرایی (رابطه رگرسیونی) تعیین گردید.  به منظور ارائه CLFA آنالیز حساسیت امتیازات پارامترهای سطح خاک انجام گرفت و در پارامترهای ارزیابی سطح خاک تغییراتی داده شد . سپس صحت شاخص های سطح خاک روش CLFA از طریق اندازه گیری های صحرایی (رابطه رگرسیونی) تعیین گردید. نتایج نشان داد بین شاخص های چرخه عناصر و پایداری سطح خاک در دو منطقه مرجع و بحرانی تفاوت معنی دار وجود دارد (05/0 p>). تفاوت معنی داری بین شاخص های نفوذپذیری در دو منطقه مرجع و بحرانی وجود نداشت (05/0 p>). نتایج بیان نمود صحت شاخص های سطح خاک روش LFA در طبقه صحت متوسط (6/0-4/0R: ) و صحت شاخص های سطح خاک روش CLFA در طبقه صحت کامل(6/0<R) قرار دارند. این نتیجه بیانگر کارایی بیشتر روش CLFA نسبت به روش LFA برای اکوسیستم های مرتعی خشک منطقه ندوشن واقع در مناطق مرکزی ایران می باشد.

کلمات کلیدی: LFA، CLFA، بررسی صحت، منطقه مرجع، منطقه بحرانی.

فصل اول

1-1- مقدمه 1

1-2- معرفی روش تجزیه و تحلیل عملکرد چشم انداز 6

    1-2-1- تجزیه و تحلیل عملکرد چشم انداز(LFA) 7

    1-2-2- ایجاد و توسعه روش  LFA 8

    1-2-3- بکارگیری روش LFA 10

       1-2-3-1- محاسبه سازمان یافتگی اکوسیستم 11

       1-2-3-2- ارزیابی سطح خاک 12

       1-2-3-3- چهارچوب تفسیری LFA 14

1-3- فرضیه های تحقیق 15

1-4- اهداف تحقیق 16

فصل دوم

2-  سابقه تحقیق 17

فصل سوم

3-1- معرفی منطقه مورد مطالعه 23

   3-1-1- موقعیت جغرافیایی 23

   3-1-2- پوشش گیاهی 24

   3-1-3- وضعیت بارندگی 26

   3-1-4- درجه حرارت 26

   3-1-5- باد 26

   3-1-6- وضعیت خاک 26

3-2-  مراحل انجام کار و برداشت داده ها 27

   3-2-1- کاربرد روش LFA در دو منطقه مرجع و بحرانی 27

       3-2-1-1- کاربرد روش LFA در منطقه مرجع 27

       3-2-1-2- کاربرد روش LFA در منطقه بحرانی 28

    3-2-2-  مقایسات بین شاخص های LFA در دو منطقه مرجع و بحرانی 28

    3-2-3-  بررسی صحت ارزیابی شاخص های سطح خاک 29

       3-2-3-1-  نفوذپذیری 29

       3-2-3-2-  پایداری خاک 31

       3-2-3-3-  چرخه عناصر 33

       3-2-3-4-  بررسی صحت 34

3-3-  تطبیق روش LFA 35

   3-3-1-  بررسی تطابق پارامتر های 11 گانه سطح خاک 35

   3-3-2-  ارائه پارامتر جدید برای روش LFA 36

   3-3-3- ارائه LFA تطبیق داده شده یاCLFA 37

   3-3-4- بررسی صحت ارزیابی شاخص های سطح خاک CLFA 37

   3-3-5- بررسی مفید بودن تغییرات اعمال شده در LFA تحت عنوان CLFA 38

فصل چهارم

 4- نتایج 39

 4-1- کاربرد روش LFA در دو منطقه مرجع و بحرانی 39

   4-1-1- کاربرد روش LFA در منطقه مرجع 39

   4-1-2- کاربرد روش LFA در منطقه بحرانی 40

   4-1-3- مقایسات بین شاخص های LFA در دو منطقه مرجع و بحرانی 41

4-2-  بررسی صحت ارزیابی شاخص های سطح خاک 45

   4-2-1- نفوذپذیری 46

   4-2-2- پایداری خاک 47

   4-2-3- چرخه عناصر 50

   4-2-4- بررسی صحت شاخص های سطح خاک 51

4-3- تطبیق روش LFA 57

   4-3-1- بررسی تطابق پارامتر های 11 گانه سطح خاک 57

   4-3-2- ارائه پارامتر جدید برای روش LFA 58

   4-3-3- ارائه LFA تطبیق داده شذه یاCLFA 59

       4-3-3-1- تغییرات در پارامتر های شاخص پایداری LFA و ارائه CLFA 60

       4-3-3-2- تغییرات در پارامتر های شاخص نفوذپذیری LFA و ارائه CLFA 60

   4-3-4- بررسی مفید بودن تغییرات در روش LFA  تحت عنوان CLFA 61

فصل پنجم

5-1- بحث و نتیجه گیری 64

5-2- پیشنهادات 70

منابع

منابع مورد استفاده 72

جدول 3-1، طبقات میزان صحت شاخص های LFA 35

جدول 4-1، شاخص های سطح خاک و سازمان یافتی اکوسیستم در منطقه مرجع 40

جدول 4-2، شاخص های سطح خاک و سازمان یافتگی اکوسیتم در منطقه بحرانی 41

جدول 4-3، میانگین حسابی شاخص های سطح خاک و سازمان یافتگی اکوسیستم 41

جدول 4-4، نتیجه آزمون t  برای شاخص سازمان یافتگی چشم انداز 42

جدول 4-5، نتیجه آزمون t برای شاخص پایداری خاک 43

جدول 4-6، نتیجه آزمون t برای شاخص چرخه عناصر غذایی خاک 44

جدول 4-7، نتیجه آزمون t برای شاخص چرخه نفوذپذیری خاک 45

جدول 4-8، نفوذپذیری خاک در لکه های حاصلخیز موجود در عرصه و فضای بین لکه ای 46

جدول 4-9، پایداری خاکدانه ها در لکه حاصلخیز بوته 48

جدول 4-10، پایداری خاکدانه ها در لکه حاصلخیز ایریس 48

جدول 4-11، پایداری خاکدانه ها در لکه حاصلخیز علف گندمی 49

جدول 4-12، پایداری خاکدانه ها در فضای بین لکه ای 49

جدول 4-13، نتایج پایداری خاکدانه ها در انواع لکه ها و فضاهای بین لکه ای 50

جدول 4-14، درصد وزنی کربن آلی خاک در انواع لکه ها و فضاهای بین لکه ای 51

جدول 4-15، شاخص نفوذپذیری سطح خاکLFA بر حسب درصد در انواع فضاها 52

جدول 4-16، شاخص پایداری سطح خاک LFA  بر حسب درصد در انواع فضاها 54

جدول 4-17، شاخص چرخه عناصر سطح خاک LFA  بر حسب درصد در انواع فضاها 56

جدول 4-18، ضریب تغییرات امتیازات داده شده به پارامتر های ارزیابی سطح خاک LFA 58

جدول 4-19، تعیین امتیاز پارامتر سنگریزه موجود در سطح خاک 59

جدول 4-20، پارامترهای موجود در LFA و CLFA  در شاخص پایداری 60

جدول 4-21، پارامترهای موجود در LFA و CLFA  در شاخص نفوذپذیری 61

جدول 4-22، نتایج تعیین کننده صحت تغییرات در پارامتر های LFA و ارائه CLFA 64

 شکل 1-1، چهارچوب مفهومی ارائه شده توسط لودویگ و تونگ وی (1999) 8

شکل 1-2، پراکنش مکانی نقاطی از استرالیا که روش LFA در آنها به کار برده شده است 10

شکل 1-3، نحوه برداشت داده های طول و عرض لکه های حاصلخیز و فضای بین لکه ای 12

شکل 1-4، پارامتر هایی که جهت ارزیابی سطح خاک مورد استفاده قرار می گیرند 13

شکل 5-1، منحنی چهارچوب تفسیری یک اکوسیستم بر اساس شاخص های LFA 15

شکل 3-1، موقعیت جغرافیایی مرتع مزرعه امین در یزد و ایران 24

شکل 3-2، نمایی از پوشش گیاهی منطقه مورد مطالعه 25

شکل 3-3، نمایی از پوشش گیاهی منطقه مورد مطالعه 25

شکل 3-4، تعیین نفوذپذیری لکه ایریس (راست) و لکه حاصلخیز علف گندمی (چپ) 30

شکل 3-5، تعیین نفوذپذیری لکه بوته (راست) و فضای بین لکه ای (چپ) 30

شکل 3-6، نمودار جریانی تعیین طبقه پایداری خاکدانه ها به روش امرسون 32

شکل 3-7، تعیین پایداری خاکدانه های لکه ایریس (راست) و لکه حاصلخیز علف گندمی (چپ) 33

شکل 3-8، تعیین پایداری خاکدانه های لکه بوته (راست) وفضای بین لکه ای (چپ) 33

شکل 4-1، تفاوت شاخص سازمان یافتگی چشم انداز در دو منطقه مرجع و بحرانی 42

شکل 4-2، تفاوت شاخص پایداری خاک در دو منطقه مرجع و بحرانی 43

شکل 4-3، تفاوت شاخص چرخه عناصر در دو منطقه مرجع و بحرانی 44

شکل 4-4، تفاوت شاخص نفوذپذیری در دو منطقه مرجع و بحرانی 45

شکل 4-5، منحنی نفوذپذیری لکه های حاصلخیز و فضاهای بین لکه ای 47

شکل 4-6، رابطه رگرسیونی بین شاخص نفوذپذیری LFA و نفوذپذیری خاک 53

شکل 4-7، رابطه رگرسیونی بین شاخص پایداری LFA و پایداری خاکدانه های خاک 55

شکل 4-8، رابطه رگرسیونی بین شاخص چرخه عناصر LFA و میزان کربن آلی خاک 57

شکل 4-9، رابطه رگرسیونی بین شاخص پایداری CLFA و پایداری خاکدانه های خاک 62

شکل 4-10، رابطه رگرسیونی بین شاخص نفوذپذیری CLFA و نفوذپذیری خاک 63

1-1-  مقدمه

بیشترین سطح خشکی های زمین به مراتع اختصاص دارد و این اکوسیستم ها 47 درصد از مساحت خشکیهای زمین را تشکیل می دهند، مساحت مراتع ایران 94 میلیون هکتار می باشد (مقدم، 1386) که این مقدار قسمت اعظم مساحت کشور می باشد و نحوه بهره برداری ، نگهداری و احیای  این بخش کاملا ضروری است زیرا در راستای توسعه پایدار[1] کشور بایستی به پتانسیل های موجود در این عرصه توجه کافی به عمل آید. به عبارت دیگر  مدیریت اصولی مراتع کشور به لحاظ اینکه قسمت اعظم  مساحت کشور را تشکیل می دهند مساله­ای کاملا ضروری است. در حدود 90 درصد مراتع ایران در اقالیم خشک و نیمه خشک قرار دارند. بارندگی کم و با نوسانات شدید مشخصه اصلی اکوسیستم های مرتعی موجود در مناطق خشک و نیمه خشک می باشد. از سوی دیگر مدیریت اکوسیستم های مرتعی واقع شده در این مناطق بسیار حساس است، زیرا به علت شرایط اکولوژیکی و اقلیمی، آسیب پذیری این نواحی در مقایسه با اکوسیستم های مرتعی نواحی مرطوب و نیمه مرطوب بسیار زیاد بوده و در صورت تخریب در پی بهره برداری بی رویه و غیر اصولی، احیای آنها نیازمند زمان طولانی و در پاره ای از موارد غیر قابل دسترس است. جهت اعمال مدیریت علمی و صحیح بر اکوسیستم های مرتعی، داشتن اطلاعاتی از اکوسیستم به عنوان شاخص های سلامت[2] و کارکرد اکوسیستم2 مورد نیاز است. روش های مورد استفاده جهت ارزیابی مراتع3 شامل روش های درجه بندی مراتع، روش کلیماکس و روش شش فاکتوری هستند(مقدم، 1386). روش درجه بندی مراتع، روشی کیفی و نظری بوده و مانند روش های کمی نتایج دقیقی بدست نمی دهد. روش کلیماکس یک روش کمی است و بر سایر روش های متداول ارجحیت دارد اما عیب عمده این روش آن است که کاربرد آن مستلزم داشتن اطلاعات دقیق از کلیماکس4 منطقه است و این در حالی است که در بسیاری از مراتع کشور قطعه قرق شده که مبین اطلاعاتی پیرامون کلیماکس عرصه است وجود ندارد (مقدم، 1386). روش شش فاکتوری در بخش امتیاز دهی به ترکیب پوشش گیاهی و تکثیر گیاهان مرتعی نیاز به اطلاعاتی در مورد کلیماکس منطقه دارد که در تمام مناطق وجود ندارد.  جهت اطلاع از نحوه عملکرد اکوسیستم مرتعی (گرایش5) از روش های کوادرات ثابت6، ترانسکت ثابت7، و روش امتیاز دادن به خصوصیات مرتع (وزن دهی) استفاده می شود (مقدم، 1386). در روش های کوادرات ثابت و ترانسکت ثابت آماربرداری در یک بازه زمانی از سطح کوادرات یا طول ترانسکت صورت می گیرد. در دو روش اخیر داده های برداشت شده مربوط به شاخص های پوشش گیاهی می باشند که تنها بخشی از اکوسیستم مرتعی (گیاه) مورد ارزیابی قرار می گیرد. در روش وزن دهی به خصوصیات مرتع، برخی ویژگی های خاک آن هم به صورت کیفی امتیاز دهی می شود. به علاوه در این روش تنها می توان جهت گرایش را مشخص کرد بدون اینکه شدت و سرعت آن معلوم شود (مقدم، 1386).

این مسائل در پایش مراتع در سطح جهان به نحوی مشابه وجود داشت. پایش مراتع نوعا توصیفی و محدود به شواهدی بود که از بخش زنده اکوسیستم های مرتعی مبتنی بر نظریه توالی گیاهی بدست می آمد (گلی، 1977)[3]. روش های متداول روش هایی بودند که به میزان گسترده ای وابسته به تنها کاربری فعلی بوده و تولید علوفه مهم ترین رکن خروجی آنها بود (تونگ وی، 2004)[4]. در سطح جهان روش های نوین پایش مرتع بوجود آمده اند که با دیدگاهی اکوسیستمی به پایش مراتع پرداخته و مؤلفه های دیگری علاوه بر پوشش گیاهی را در پایش یک اکوسیستم مرتعی مورد نظر دارند، ولی متاسفانه در کشور ایران هنوز همان روش های قبلی مورد استفاده می باشند و در بخش های اجرایی چون ادارات منابع طبیعی ارزیابی وضعیت اکوسیستم مرتعی معمولا با روش شش فاکتوری و تعیین گرایش آن با روش امتیاز دهی به خصوصیات مرتع صورت می گیرد که همانطور که بیان گردید تنها بخشی از اکوسیستم مرتعی را و آن هم به صورت نیمه کمی پایش می کنند.

عملکرد اکوسیستم های مرتعی خشک و نیمه خشک دنیا به طور گسترده ای تحت تاثیر فرایند های اکولوژیکی و هیدرولوژیکی[5] و پس خورها[6] و عکس العمل های این دو بخش در مقیاس های مختلف می باشد (نوی- میر[7]، 1973 – ویلکوس و همکاران[8]، 2003 – لودویگ و همکاران[9]، 2005). مساله دیگر عدم توجه روش های ارزیابی مرتع موجود در ایران به مسائل هیدرولوژیکی و خاکی اکوسیستم مرتعی است که از مؤلفه های اصلی یک اکوسیستم مرتعی است. رابطه بین فرایند های هیدرولوژیکی و پوشش گیاهی مخصوصا در محیط های با محدودیت آب[10] تنگاتنگ است، خصوصا این که الگو های پوشش گیاهی در این گونه رژیم های رطوبتی ترکیبی از لکه های حاصلخیز[11] با زیست توده زیاد و فضاهای خاک لخت[12] می باشد (ساکو و همکاران[13]، 2006). در فرایند های اصلی یک اکوسیستم در فضای خاک لخت و لکه های حاصلخیز تفاوت بسیار زیادی وجود دارد. به عنوان مثال فرآیند نفوذپذیری دریک اکوسیستم در فضا های مذکور دارای تفاوت قابل توجهی می باشد و این در حالی است که نرخ نفوذپذیری[14] در فرایند هایی چون ایجاد رواناب و تامین رطوبت مورد نیاز گیاهان در مناطق خشک یک عامل اساسی است. میزان آب دریافتی و نفوذ یافته در لکه های حاصلخیز زنده (پوشش گیاهی) می تواند تا 200 درصد میزان بارندگی باشد (والنتین و همکاران[15]، 1999 – دانکرلی[16]، 2002). مکانیسم رواناب نفوذ محرکه ای برای یک پس خور مثبت در اکوسیستم است که همان افزایش رطوبت برای لکه های حاصلخیز گیاهی است و در نهایت سبب تقویت کردن الگوهای پوششی[17] می گردد (پوییگ دفابرگس و همکاران[18]، 1999- والنتین و همکاران، 1999- ویلکوس، 2003- ترنبال و همکاران[19]، 2008).

از سوی دیگر توزیع مجدد آب از فضاهای خاک لخت (ناحیه منبع[20]) در مکان لکه های حاصلخیز پوشش گیاهی (ناحیه جذب[21]) یک فرایند پایه در نواحی خشک است که ممکن است در اثر آشفتگی های وارده به ساختار لکه های حاصلخیز مختل گردد. شایان ذکر است توزیع مجدد آب با توزیع رسوبات و عناصر غذایی توام بوده و نرخ حاصلخیزی منجر به افزایش تولید اولیه[22] اکوسیستم می شود. بر اساس موارد ذکر شده الگوهای پوششی فضای بین لکه ای و لکه های حاصلخیز نقش مهمی را در تعیین میزان رواناب و رسوبات یک اکوسیستم مرتعی علی الخصوص در نواحی خشک و نیمه خشک بازی می کند (کامرات و ایمنسون[23]، 1999- ویلکوس، 2003 – ایمنسون و پرینسون[24]، 2004). ساختار لکه های حاصلخیز و فضاهای بین لکه ای در نواحی خشک و نیمه خشک بر رطوبت خاک اثر دارد و این امر خود تعیین کننده نرخ فرسایش نیز می باشد و کاهش لکه های حاصلخیز پوشش گیاهی منجر به افزایش نرخ رواناب[25] و افزایش فرسایش در باران های شدید شده و منجر به تخریب سرزمین می گردد ( ساکو و همکاران، 2006 – ترنبال و همکاران 2008).

بر اساس مطالب ذکر شده فرآیند های هیدرولوژیکی یک اکوسیستم مرتعی نقش بسزایی در توزیع مجدد منابع و تولید رواناب و نفوذپذیری دارند. همانگونه که ذکر گردید این فرایندها خود متاثر از الگوی مکانی فضاهای لکه های حاصلخیز و فضاهای بین لکه ای می باشند و از سوی دیگر دارای تاثیر مستقیم بر این الگوها می باشند. بدین معنی که تعیین کننده میزان رشد، شادابی، زادآوری، تراکم، تاج پوشش و دیگر مؤلفه های پوشش گیاهی هستند که در علم مرتعداری مورد توجه بوده و اعمال مدیریت صحیح بر آنها از اهداف مرتعداری می باشد. حال آنکه روش های ارزیابی مراتع در ایران به بررسی کمی و دقیق فرایندهای اکوهیدرولوژیکی نپرداخته و عملاً بخشی از اکوسیستم در پایش مراتع مورد ارزیابی قرار نمی گیرد و تاثیر این بخش در حاصلخیزی اولیه یک اکوسیستم کاملا مشهود است. به عنوان مثال کیلر و همکاران[26] (2006) بیان نمودند که الگوهای پوشش گیاهی با توجه به توزیع مجدد عوامل کلیدی غیر زنده چون انرژی، آب و عناصر غذایی در مسیر های مهمی که در ارتباط با پویایی جامعه در بعد مکان و زمان هستند، تعیین می گردند.

در این تحقیق کارایی روش تجزیه و تحلیل چشم انداز (LFA) در یک اکوسیستم مرتعی خشک مورد بررسی قرار گرفت. روش تجزیه و تحلیل چشم انداز بر اساس یک چهارچوب مفهومی پایه ریزی گردیده که مبتنی بر فرایندهایی چون نفوذ، رواناب، توزیع مجدد عناصر غذایی، بذر گیاهی و غیره می باشد. به علت عدم آشنایی، کاربرد چنین روش هایی در کشور معمول نیست. در این تحقیق ضمن معرفی این روش، میزان کارایی آن در یک اکوسیستم مرتعی خشک مناطق مرکزی کشور مورد بررسی قرار گرفته است. بدین ترتیب می توان در ابتدا یک اکوسیستم مرتعی را با جزئیات بیشتری و در بخش های پایه مورد پایش قرار داد. در ادامه صحت اطلاعات کسب شده توسط این روش مورد آزمون قرار گرفت. در مرحله بعدی تحقیق با اعمال تغییراتی متناسب با شرایط اکولوژیکی، خاک و اقلیمی منطقه مورد مطالعه در پارامتر های این روش افزایش صحت اطلاعات بدست آمده مورد بررسی قرار گرفته است.

دانلود فایل